Targeted therapy seems untargeted: TNF-a antagonists in psoriasis as an example

Manahel Mahmood Alsabbagh¹⊠

¹Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Department of Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain.

Abstract

Biologic therapies have emerged as targeted treatments in psoriasis, offering personalized options for patients. However, when examining the cytokine network in psoriasis, this raises the question of whether biologics should be viewed as targeted therapies. This article reviews the literature focusing on the impact of tumor necrosis factor (TNF)-α antagonists on the cytokine profile and immunocytes in psoriasis. The literature suggests that the effects of TNF-α antagonists extend beyond TNF-α. These agents have a significant influence on various cytokines of the innate and adaptive immune system, including interferon-γ, interleukin (IL)-1, IL-4, IL-6, IL-8, IL-12, IL-17, IL-22, IL-23, and IL-24 in blood and skin. In addition, TNF-α antagonists also affect immunocyte counts, such as neutrophil elastase-positive cells. This demonstrates that, even though biologic treatments were initially designed to target specific molecules structurally, their function should not be narrowly considered targeted. This concept has important implications in clinical practice, including for the understanding and knowledgeable prediction of drug-related side effects, such as colitis, inflammatory bowel disease, myocarditis, and infections, as well as for taking necessary precautions before prescribing medications.

Keywords: adalimumab, biologics, infliximab, psoriasis, TNF-α antagonists

Received: 3 July 2025 | Returned for modification: 11 August 2025 | Accepted: 12 August 2025

Introduction

Topical treatments and conventional systemic therapies have been used for decades to treat psoriasis; however, treating severe cases of psoriasis can be challenging. The emergence of biologic therapies, such as tumor necrosis factor (TNF)- α and interleukin (IL)-12/ IL-23, IL-17, IL-23, and IL-36 antagonists, has transformed the management of moderate-to-severe psoriasis. These treatments target specific molecules involved in the inflammatory process, providing effective and personalized options. Among the available biologic agents, TNF- α antagonists were the first to be approved and have become a cornerstone in psoriasis treatment (1).

TNF- α is a pro-inflammatory cytokine elevated in psoriasis skin and blood. Monocytes, macrophages, dermal dendrocytes, mastocytes, and peripheral blood mononuclear cells are all capable of producing and releasing TNF- α . By examining the cytokine network in psoriasis, one can note that TNF- α production is potentiated by IL-1, IL-2, and interferon (IFN)-y. Reciprocally, TNF- α augments IL-1, IL-6, IL-8, and transforming growth factor (TGF)- α . Each of these cytokines interacts with other molecules, forming a broader and more complex network (1).

It could be speculated that interfering with this regulated system (e.g., by neutralizing TNF- α) would disrupt the entire cytokine network. Vasculitis, lupus, inflammatory myopathies, neurological inflammatory events, and paradoxical diseases (e.g., psoriasis, hidradenitis suppurativa, pyoderma gangrenosum, ocular inflammatory diseases, and inflammatory bowel diseases) have been reported in association with TNF- α treatment (2, 3), suggesting that "targeted treatments may not be truly targeted."

This article reviews the literature and examines the effect of TNF- α antagonists on the cytokine profile in psoriasis, focusing on the four Food and Drug Administration (FDA)-approved agents: etanercept, infliximab, adalimumab, and certolizumab.

□ Corresponding author: ManahelAlsabbagh2014@alumnircsi.com

The effect of TNF-α antagonists on the cytokine profile in psoriasis

Etanercept

Etanercept is a TNF- α antagonist that received FDA approval for the treatment of psoriasis in April 2004. It is a TNF receptor-2 (p75) protein fused with the fragment crystallizable region of immunoglobulin G1, thus binding to soluble and membrane-bound TNF- α and TNF- β (4). Compared to other TNF- α antagonists such as adalimumab and infliximab, etanercept has similar affinity and 10-to-20-fold greater avidity to TNF- α (5).

Despite being a TNF- α antagonist, the effect of etanercept on the TNF- α profile is controversial. For example, in psoriasis, etanercept may either promote (6) or inhibit (7) the systemic release of TNF- α . It also downregulates cutaneous gene expression (8, 9) and release, as shown by immunohistochemistry (10).

The immunomodulatory effect of etanercept extends beyond TNF- α modulation. Evidence suggests it also downregulates the systemic gene expression of IL-1 β (11), IL-6 (11), IL-8 (11), IL-12p35 (12), IL-12/IL-23p4o (11), IL-17 (13), IL-23p19 (11-13), and IL-33 (13). It also suppresses the systemic release of IL-1 α (14), IL-1 β (7), IL-6 (7, 14-16), IL-8 (15), IL-12 (7), IL-17 (7, 17), IL-22 (7, 17), IL-23 (7), IL-32 (7), and IFN-y (14). On the other hand, etanercept promotes the systemic release of Th-2 cytokines, including IL-4 (12) and IL-10 (7, 15).

Locally, etanercept downregulates the cutaneous gene expression of IL-1 β (8, 18), IL-8 (8, 12), IL-12/IL-23p4o (18), IL-17 (8, 18, 19), IL-19 (18), IL-20 (18), IL-22 (18), IL-23p19 (18), IL-24 (18), IFN-y (8, 11), CXC chemokine ligand (CXCL)1 (18), CXCL10 (18), and CC chemokine ligand (CCL)20 (18). Concurrently, etanercept suppresses the cutaneous infiltration of inflammatory cells, including cluster of differentiation (CD)3+ cells, CD68+ cells, CD161+ cells, and elastase-positive cells (9).

Infliximab

Infliximab is a chimeric immunoglobulin $G1\kappa$ monoclonal antibody that binds to and neutralizes soluble and transmembrane TNF- α . It was approved for the treatment of psoriasis in September 2006 (4).

Infliximab modulates cytokine release and T-cell expansion, exerting contradictory pro- and anti-inflammatory effects. For instance, even though it transiently augments systemic TNF- α , this is followed by a gradual and sustained inhibition of protein release (20, 21). In addition, infliximab was reported to induce generalized pustular psoriasis in a patient with Crohn's disease, accompanied by the expansion of circulating IL-17+ and IL-22+ CD4+ and CD8+ cells during psoriasis flare (22). However, infliximab also exhibits an anti-inflammatory effect. It expands regulatory T-cells (23) and transiently promotes IL-10 release (21).

At the level of skin, infliximab attenuates the infiltration of CD4+ cells (24, 25), CD8+ cells, CD11c+ cells, CD1a+ cells, CD3+ cells, and neutrophil elastase-positive cells (25). It also inhibits the local release of TNF- α , IL-8, IL-12, and IL-23 (25).

Adalimumab

Adalimumab is a recombinant human immunoglobulin G1 monoclonal antibody that binds to and neutralizes TNF- α . It obtained FDA approval for the treatment of psoriasis in January 2008 (4). However, although both are TNF- α antagonists, Bhutani et al. reported four cases with a paradoxical flare of psoriasis upon switching from etanercept to adalimumab (26), indicating potential differences in their cytokine profile.

The effect of adalimumab extends beyond TNF- α modulation. For instance, it inhibits the systemic release of IL-10 (27) and IL-22 (28) in psoriasis.

At the level of skin, adalimumab significantly inhibits elastase-

positive cell infiltration (29, 30) and restores Langerhans cell count in lesional skin (31). However, it fails to alter CD4+, CD8+, CD25+, CD45RO+, CD45RA+, CD68+, and CD94+ cell count (29, 32). The effect of adalimumab on CD3+ and CD161+ cell count is still inconclusive (29, 30, 32). Adalimumab tends to reduce cutaneous infiltration of IL-17+ cells (30). It also downregulates the gene expression of Th-17 polarizing cytokines (IL-23A, transforming growth factor- β 1, and IL-1 β), Th-17 cytokines (IL-17 and IL-22), Th-1 polarizing cytokines (IFN- α), Th-1 cytokines (IFN-y), and various chemokines (IL-8, CXCL10, and CCL20) (30, 33, 34). However, its effect on TNF- α is controversial (30, 33).

Certolizumab

Certolizumab is a humanized recombinant antibody fragment antigen-binding region specific for TNF- α , conjugated to polyethylene glycol. It obtained FDA approval for the treatment of psoriasis in May 2018 (4). Unfortunately, the cytokine profile of certolizumab in psoriasis is poorly characterized.

Clinical implications

Figure 1 summarizes the effect of TNF- α antagonists on cytokines in psoriasis. Understanding the actual impact of TNF- α antagonists on the cytokine network is crucial due to its clinical implications.

First, it helps explain many of the treatment-related side effects. For instance, etanercept inhibits IL-6 and IL-22 on the one hand, whereas the deficiency of IL-6 (35) and IL-22 (36) on the other hand is linked to the development and worsening of colitis. Studies have shown that more than 400 cases of inflammatory bowel disease may have been triggered by etanercept (37). Similarly, etanercept reduces IL-33 levels. IL-33 plays a protective role in the eye by preventing retinal detachment; consistently, IL-33 deficiency can lead to retinal degeneration and gliosis (38). This

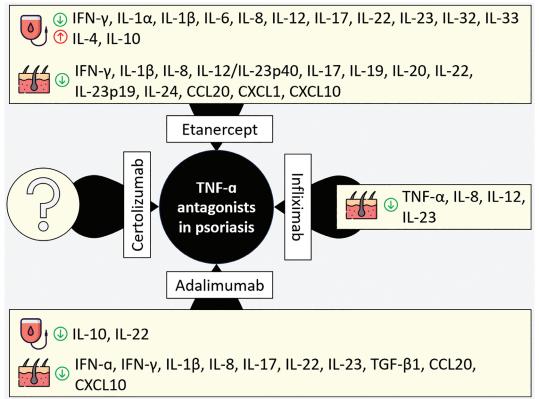


Figure 1 | Summary of the effect of TNF-α antagonists on the cytokine profile in psoriasis blood and skin.

CCL = chemokine ligand, CXCL = chemokine ligand, IFN = interferon, IL = interleukin, TNF = tumor necrosis factor, TGF = transforming growth factor.

is supported by reports of etanercept-associated toxic retinopathy in the literature (39).

Second, it helps scientifically predict side effects. For instance, IL-23 deficiency is associated with myocardial inflammation (40); therefore, one would expect that treatment with TNF- α antagonists may induce myocarditis, and this is true (Table 1).

Third, understanding the impact of TNF- α on various cytokines should prompt physicians to take necessary precautions before

Table 1 | Summary of cytokine deficiency-reported associations and relevant side effects in TNF- α antagonists.

Deficiency	Reported association	Relevant side effect
IFN-γ	Mycobacterial infection (42)	Mycobacterial infection (43, 44)
IL-6	Myocardial dysfunction (45)	Cardiomyopathy (46), reduced cardiac output (47)
	Colitis (36)	Inflammatory bowel disease (37)
IL-8	Pyelonephritis (48)	Urinary tract infections (49)
IL-12	Recurrent infections (50)	Serious infections (51)
IL-17	Chronic mucocutaneous candidiasis (52)	Systemic and localized candidiasis (41)
IL-22	Colitis (36)	Inflammatory bowel disease (37)
IL-23	Myocardial inflammation (40)	Myocarditis (53)
IL-33	Retinal degeneration and gliosis (38)	Toxic retinopathy (39)

IFN = interferon, IL = interleukin, TNF = tumor necrosis factor.

prescribing drugs. Precautions include opting for other treatment agents, dose adjustment, initiation of prophylaxis treatment concurrently, or close follow-up for the expected side effect for early intervention. For example, IL-17 deficiency makes patients more susceptible to chronic mucocutaneous candidiasis. Because IL-17 antagonists are not recommended for these patients, physicians may feel more at ease prescribing TNF- α antagonists. It is important to recognize that TNF- α antagonism inhibits IL-17, and there have been numerous cases of systemic and localized candida infections in patients receiving TNF- α antagonists (41).

Conclusions

Even though targeted therapies have been designed to target a particular molecule structurally, this article has demonstrated that the impact of TNF- α antagonists extends beyond the targeted molecule to include disrupting immune cell count and cytokine level. This raises the question of whether TNF- α antagonists (and potentially other biologic treatments neutralizing molecules involved in inflammation) should truly be considered targeted treatments. This is particularly important in clinical practice in terms of understanding and predicting treatment-related side effects, as well as taking precautions before prescribing medications. The findings suggest that the biologics should be viewed as *structurally* targeted therapies, but *functionally* untargeted therapies.

References

- Alsabbagh MM. Cytokines in psoriasis: from pathogenesis to targeted therapy. Hum Immunol. 2024;85:110814.
- De Stefano L, Pallavicini FB, Mauric E, Piccin V, Vismara EM, Montecucco C, et al. Tumor necrosis factor-alpha inhibitor-related autoimmune disorders. Autoimmun Rev. 2023;22:103332.
- Wollina U, Hansel G, Koch A, Schonlebe J, Kostler E, Haroske G. Tumor necrosis factor-alpha inhibitor-induced psoriasis or psoriasiform exanthemata: first 120 cases from the literature including a series of six new patients. Am J Clin Dermatol. 2008;9:1–14.
- 4. Menter A, Strober BE, Kaplan DH, Kivelevitch D, Prater EF, Stoff B, et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J Am Acad Dermatol. 2019;80:1029-72.
- Kaymakcalan Z, Sakorafas P, Bose S, Scesney S, Xiong L, Hanzatian DK, et al. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol. 2009;131:308–16.
- Roman II, Mocan T, Orasan MS, Jianu EM, Sfrangeu CA, Orasan RI. Relationship between etanercept and thyroid function in patients with psoriasis vulgaris. Cluiul Med. 2018;91:42-7.
- Liu Y, Qin G, Meng Z, Du T, Wang X, Tang Y, et al. IL-1beta, IL-17A and combined phototherapy predicts higher while previous systemic biologic treatment predicts lower treatment response to etanercept in psoriasis patients. Inflammopharmacology. 2019;27:57–66.
- Zaba LC, Suarez-Farinas M, Fuentes-Duculan J, Nograles KE, Guttman-Yassky E, Cardinale I, et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol. 2009;124:1022-10.
- de Groot M, Teunissen MB, Picavet DI, de Rie MA, Bos JD. Reduction of different inflammatory cell types of the innate immune system in psoriatic skin during etanercept treatment. Exp Dermatol. 2010;19:754–6.
- Caldarola G, De Simone C, Carbone A, Tulli A, Amerio P, Feliciani C. TNFalpha and its receptors in psoriatic skin, before and after treatment with etanercept. Int J Immunopathol Pharmacol. 2009;22:961–6.
- Tan JK, Aphale A, Malaviya R, Sun Y, Gottlieb AB. Mechanisms of action of etanercept in psoriasis. J Investig Dermatol Symp Proc. 2007;12:38–45.
- 12. Quaglino P, Bergallo M, Ponti R, Barberio E, Cicchelli S, Buffa E, et al. Th1, Th2, Th17 and regulatory T cell pattern in psoriatic patients: modulation of cytokines and gene targets induced by etanercept treatment and correlation with clinical response. Dermatology. 2011;223:57–67.

- 13. Yu Q, Tong Y, Cui L, Zhang L, Gong Y, Diao H, et al. Efficacy and safety of etaner-cept combined plus methotrexate and comparison of expression of pro-inflammatory factors expression for the treatment of moderate-to-severe plaque psoriasis. Int Immunopharmacol. 2019;73:442–50.
- 14. Cordiali-Fei P, Ardigò M, Mastroianni A, Giuliani A, D' Agosto G, Bordignon V, et al. Serum cytokines and bioumoral immunological characterization of psoriatic patients in long term etanercept treatment. Int J Immunopathol Pharmacol. 2008;21:643–9.
- Kamarashev J, Lor P, Forster A, Heinzerling L, Burg G, Nestle FO. Generalised pustular psoriasis induced by cyclosporin a withdrawal responding to the tumour necrosis factor alpha inhibitor etanercept. Dermatology. 2002;205:213-6.
- 16. Waszczykowski M, Bednarski I, Lesiak A, Waszczykowska E, Narbutt J, Fabis J. The influence of tumour necrosis factor alpha inhibitors treatment—etanercept on serum concentration of biomarkers of inflammation and cartilage turnover in psoriatic arthritis patients. Postepy Dermatol Alergol. 2020;37:995–1000.
- 17. Caproni M, Antiga E, Melani L, Volpi W, Del Bianco E, Fabbri P. Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial. J Clin Immunol. 2009;29:210–4.
- Wang F, Smith N, Maier L, Xia W, Hammerberg C, Chubb H, et al. Etanercept suppresses regenerative hyperplasia in psoriasis by acutely downregulating epidermal expression of interleukin (IL)-19, IL-20 and IL-24. Br J Dermatol. 2012; 167:92-102.
- Johnston A, Guzman AM, Swindell WR, Wang F, Kang S, Gudjonsson JE. Early tissue responses in psoriasis to the antitumour necrosis factor-alpha biologic etanercept suggest reduced interleukin-17 receptor expression and signalling. Br J Dermatol. 2014;171:97-107.
- Mastroianni A, Minutilli E, Mussi A, Bordignon V, Trento E, D'Agosto G, et al. Cytokine profiles during infliximab monotherapy in psoriatic arthritis. Br J Dermatol. 2005;153:531–6.
- Amital H, Barak V, Winkler RE, Rubinow A. Impact of treatment with infliximab on serum cytokine profile of patients with rheumatoid and psoriatic arthritis. Ann N Y Acad Sci. 2007;1110:649–60.
- 22. Teraki Y, Tanaka S, Hitomi K, Izaki S. A case of generalized psoriasiform and pustular eruption induced by infliximab: evidence for skin-homing Th₁₇ in the pathogenesis. Br J Dermatol. 2010;163:1347–51.
- Yu Y, Chen Z, Wang Y, Li Y, Lu J, Cui L, et al. Infliximab modifies regulatory T cells and co-inhibitory receptor expression on circulating T cells in psoriasis. Int Immunopharmacol. 2021;96:107722.

- Bovenschen HJ, Van De Kerkhof PC, Gerritsen WJ, Seyger MM. The role of lesional T cells in recalcitrant psoriasis during infliximab therapy. Eur J Dermatol. 2005;15:454–8.
- Tang MM, Spanou Z, Tang H, Schibler F, Pelivani N, Yawalkar N. Rapid downregulation of innate immune cells, interleukin-12 and interleukin-23 in generalized pustular psoriasis with infliximab in combination with acitretin. Dermatology. 2012;225;338–43.
- 26. Bhutani T, Koo J. Paradoxical worsening of psoriasis when switching from etanercept to adalimumab: a case series. J Dermatolog Treat. 2011;22:75–8.
- 27. Zdanowska N, Owczarczyk-Saczonek A, Czerwinska J, Nowakowski JJ, Kozera-Zywczyk A, Owczarek W, et al. Adalimumab and methotrexate affect the concentrations of regulatory cytokines (interleukin-10, transforming growth factor-β1, and interleukin-35) in patients with plaque psoriasis. Dermatol Ther. 2020;33: e14153.
- 28. Gkalpakiotis S, Arenbergerova M, Gkalpakioti P, Potockova J, Arenberger P, Kraml P. Impact of adalimumab treatment on cardiovascular risk biomarkers in psoriasis: results of a pilot study. J Dermatol. 2017;44:363-9.
- 29. de Groot M, Picavet DI, van Kuijk AW, Tak PP, Bos JD, de Rie MA, et al. A prospective, randomized, placebo-controlled study to identify biomarkers associated with active treatment in psoriatic arthritis: effects of adalimumab treatment on lesional and nonlesional skin. Dermatology. 2012;225:298–303.
- 30. Hendriks AG, van der Velden HM, Wolberink EA, Seyger MM, Schalkwijk J, Zeeuwen PL, et al. The effect of adalimumab on key drivers in the pathogenesis of psoriasis. Br J Dermatol. 2014;170:571-80.
- Gordon KB, Bonish BK, Patel T, Leonardi CL, Nickoloff BJ. The tumour necrosis factor-alpha inhibitor adalimumab rapidly reverses the decrease in epidermal Langerhans cell density in psoriatic plaques. Br J Dermatol. 2005;153:945–53.
- 32. van Lingen RG, de Jong EM, Berends MA, Seyger MM, van Erp PE, van de Kerkhof PC. Good clinical response to anti-psoriatic treatment with adalimumab and methotrexate does not inflict a direct effect on compartmentalization of T-cell subsets: a pilot study. J Dermatolog Treat. 2008;19:284–7.
- 33. Balato A, Schiattarella M, Di Caprio R, Lembo S, Mattii M, Balato N, et al. Effects of adalimumab therapy in adult subjects with moderate-to-severe psoriasis on Th17 pathway. J Eur Acad Dermatol Venereol. 2014;28:1016–24.
- 34. Chow M, Lai K, Ahn R, Gupta R, Arron S, Liao W. Effect of adalimumab on gene expression profiles of psoriatic skin and blood. J Drugs Dermatol. 2016;15:988–94.
- Cao Q, Lin Y, Yue C, Wang Y, Quan F, Cui X, et al. IL-6 deficiency promotes colitis by recruiting Ly6Chi monocytes into inflamed colon tissues in a CCL2-CCR2-dependent manner. Eur J Pharmacol. 2021;904:174165.
- Keir M, Yi Y, Lu T, Ghilardi N. The role of IL-22 in intestinal health and disease. J Exp Med. 2020;217:e20192195.
- O'Toole A, Lucci M, Korzenik J. Inflammatory bowel disease provoked by etanercept: report of 443 possible cases combined from an IBD referral center and the FDA. Dig Dis Sci. 2016;61:1772–4.
- 38. Augustine J, Pavlou S, Ali I, Harkin K, Ozaki E, Campbell M, et al. IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. J Neuroinflammation. 2019;16:251.

- Jabbouri R, Filali RA, Alaoui FZ. Toxic retinopathy associated with etanercept treatment (enbrel) case report. Teikyo Med J. 2022;45:5437-41.
- Savvatis K, Pappritz K, Becher PM, Lindner D, Zietsch C, Volk HD, et al. Interleukin-23 deficiency leads to impaired wound healing and adverse prognosis after myocardial infarction. Circ Heart Fail. 2014;7:161–71.
- Aikawa NE, Rosa DT, Del Negro GM, Moraes JC, Ribeiro AC, Saad CG, et al. Systemic and localized infection by Candida species in patients with rheumatic diseases receiving anti-TNF therapy. Rev Bras Reumatol Engl Ed. 2016;56:478–82.
- Kerner G, Rosain J, Guerin A, Al-Khabaz A, Oleaga-Quintas C, Rapaport F, et al. Inherited human IFN-gamma deficiency underlies mycobacterial disease. J Clin Invest. 2020;130:3158–71.
- 43. Park DW, Kim YJ, Sung YK, Chung SJ, Yeo Y, Park TS, et al. TNF inhibitors increase the risk of nontuberculous mycobacteria in patients with seropositive rheumatoid arthritis in a mycobacterium tuberculosis endemic area. Sci Rep. 2022;12: 4003.
- 44. Winthrop KL, Chang E, Yamashita S, Iademarco MF, LoBue PA. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-alpha therapy. Emerg Infect Dis. 2009;15:1556–61.
- 45. Chen F, Chen D, Zhao X, Yang S, Li Z, Sanchis D, et al. Interleukin-6 deficiency facilitates myocardial dysfunction during high fat diet-induced obesity by promoting lipotoxicity and inflammation. Biochim Biophys Acta Mol Basis Dis. 2017; 1863:3128–41.
- 46. Emmert MY, Salzberg SP, Emmert LS, Behjati S, Plass A, Felix C, et al. Severe cardiomyopathy following treatment with the tumour necrosis factor-alpha inhibitor adalimumab for Crohn's disease. Eur J Heart Fail. 2009;11:1106-9.
- 47. Santos RC, Figueiredo VN, Martins LC, Moraes CH, Quinaglia T, Boer-Martins L, et al. Infliximab reduces cardiac output in rheumatoid arthritis patients without heart failure. Rev Assoc Med Bras. 2012;58:698–702.
- Frendeus B, Godaly G, Hang L, Karpman D, Lundstedt AC, Svanborg C. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med. 2000;192:881–90.
- Yiu ZZN, Ashcroft DM, Evans I, McElhone K, Lunt M, Smith CH, et al. Infliximab is associated with an increased risk of serious infection in patients with psoriasis in the U.K. and Republic of Ireland: results from the British Association of Dermatologists Biologic Interventions Register (BADBIR). Br J Dermatol. 2019;180: 329–37.
- Haraguchi S, Day NK, Nelson RP Jr, Emmanuel P, Duplantier JE, Christodoulou CS, et al. Interleukin 12 deficiency associated with recurrent infections. Proc Natl Acad Sci U S A. 1998;95:13125–9.
- Quartuccio L, Zabotti A, Del Zotto S, Zanier L, De Vita S, Valent F. Risk of serious infection among patients receiving biologics for chronic inflammatory diseases: usefulness of administrative data. J Adv Res. 2019;15:87–93.
- Puel A, Cypowyj S, Marodi L, Abel L, Picard C, Casanova JL. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol. 2012;12:616–22.
- Slattery E, Ismail N, Sheridan J, Eustace K, Harewood G, Patchett S. Myocarditis associated with infliximab: a case report and review of the literature. Inflamm Bowel Dis. 2011;17:1633-4.