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Introduction

Atopic dermatitis (AD) is a chronic relapsing-remitting disease 
typically presenting with dry skin, pruritus, an age-specific distri-
bution of dermatitis, and a positive history of atopy. In the United 
Kingdom, AD affects 11 to 20% of children and 5 to 10% of adults 
(1) in comparison to only 2.1 to 4.9% of adults across North Ameri-
ca, Europe, and Japan (2). AD has a complex underlying multifac-
torial pathogenesis involving genetic and environmental factors 
that interact with the skin and the immune system, leading to 
loss of skin barrier integrity, dysregulation of innate and adap-
tive immune responses, and dysbiosis of the skin microbiome (3, 
4). Understanding these findings helps in managing AD patients. 
Although management highly depends on disease severity and 
distribution, avoidance of triggers and frequent moisturization to 
restore skin integrity are mandatory. Topical treatments include 
agents with anti-inflammatory properties such as corticosteroids 
and calcineurin inhibitors. However, acceleration of treatment to 
phototherapy, cyclosporin, and cytokine-targeted agents is car-
ried out in a step-by-step manner (5).

Cytokines play a major pathogenic role in AD. Although the 
pathologic findings mentioned above could be inherent in the 
patient’s genes, these could be also induced by a cytokine imbal-
ance, as evident in in vitro and in vivo experimental models of 
AD. A cytokine imbalance can suppress filaggrin, keratins, and 
epidermal lipids, contributing to loss of skin barrier integrity and 
a subsequent increase in transepidermal water loss, skin dryness, 
and intractable pruritus. A cytokine imbalance may also inhibit 
important antimicrobial peptides, which in turn impairs the skin 
microbiome and promotes cutaneous infections.

Cytokines can be classified according to the type of immunity 
they are involved in: type 1 immunity, type 2 immunity, or type 3 
immunity. This review highlights the imbalance of cytokines in 
AD according to this classification. It presents their role in exhib-

iting disease manifestations, and it addresses cytokines and cy-
tokine antagonists with therapeutic potential.

The T-cell subset imbalance is striking in atopic dermatitis

AD is characterized by an imbalance of T-cell subsets. For in-
stance, peripheral blood CD4+ and CD8+ cells are high in AD. In 
the differentiation of CD4+ cells, CD4+ T-helper (Th)2 cells pre-
dominate in comparison to CD4+ Th1 cells (6–9). Likewise, skin-
infiltrating lymphocytes are predominantly CD4+ T cells that pro-
liferate in response to interleukin (IL)-2, IL-3, and IL-4, and they 
seem to be resistant to tumor necrosis factor (TNF)-α–induced 
pro-apoptotic signals (10). When continuously grown in vitro, 
chromosomal aberrations and loss of the T-cell antigen complex 
are observed (11). Th2 cytokines are also elevated in sera and skin 
lesions (12–14). Overproduction of Th2 cytokines induces the mo-
lecular and histologic features of AD. Interestingly, they induce 
nucleic acid fragmentation and upregulation of Fas, a death re-
ceptor (12), which contradicts the observation of a lack of response 
to TNF-α–induced proapoptotic signals mentioned above. In the 
murine model of AD, activation of Fas increases epidermal thick-
ness, collagen deposition, and local inflammatory inflammation 
consisting of CD4+ cells, macrophages, and neutrophils (15).

The regulatory T-cell marker FoxP3 is expressed on both CD4+ 
CD25+ and CD8+ CD25+ T-cell subsets, although the latter is di-
minished in AD (16, 17). Uncontrolled inflammation might be at-
tributed to reduced peripheral blood counts and impaired cuta-
neous infiltration of CD4+ CD25+ FoxP3+ T cells, possibly due to 
recued conversion to FoxP3+ cells, which also correlates with dis-
ease severity (18). However, there is some evidence suggesting an 
increase in FoxP3+ T-cell circulation in peripheral blood (19, 20) 
and skin (21) with perivascular, peri-adnexal, and interstitial in-
filtration of CD25+ FoxP3+ cells (22) positively correlating with AD 
severity (23). Taking into account that FoxP3+ cells might exhibit
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attenuated function (24), this may explain the controversy above. 
We would suggest classifying FoxP3+ defects in AD into quantita-
tive (cell counts) or qualitative (cell function) defects. In quanti-
tative defects, conversion to FoxP3+ cells is reduced, and hence 
the cell count is unexpectedly low in inflammation. In contrast, 
in qualitative defects, FoxP3+ cells try to compensate for their 
dysfunction by increasing their count, and this explains the un-
controlled inflammation in a setting of high counts of regulatory 
T-cells. The observed controversy in FoxP3+ level might be also 
explained from another point of view, depending on the subset of 
cells that is defected. The imbalance in T-cell subsets involves two 
arms: pro- and anti-inflammatory. In scenarios involving “hyper-
active” Th2 cells and normally active regulatory T cells, the regu-
latory T cells respond by increasing their count to suppress the 
Th2–induced inflammation, and this may explain the high counts 
of regulatory T cells. In contrast, in scenarios involving normally 
active Th2 cells and “hypoactive” regulatory T cells, the negative 
control exerted on Th2 cells is lost and peripheral blood counts 
accordingly show a low level of regulatory T cells in an inflam-
mation setting. The second hypothesis is evident experimentally, 
whereby depletion of FoxP3+ T cells permits further Th2 cytokine 
release and subsequent exacerbation of the AD model (25).

An imbalance of T-cell subsets could be employed at birth to 
predict the risk of AD. Multiple factors have been described as 
affecting cord blood FoxP3 expression, including maternal AD 
(26) and maternal cytokines—namely, IL-13, IL-17, and interferon 
(IFN)-Υ. In general, neonates born with low counts of regulatory 
T cells (27) and a higher count of Th2 cells (26) are at risk of AD.

In addition to the aforementioned “intrinsic defects” in T cells, 
the distribution of T-cell subsets has been suggested to be phase-
dependent. Acute AD is associated with a significant increase in 
Th22 (IL-22), Th2 (IL-4, IL-5, IL-13, IL-31, and IL-33), Th-9 (IL-9), and 
to a less degree Th17 cytokines, whereas Th1 cytokines predomi-
nate in the chronic phase (28). Consistently, in vitro expansion of 
T cells isolated from AD patients shows a primary predominance 
of Th2 that subsequently converts to Th1 cytokines (29). The high 
level of Th2 cytokines could be attributed to the overexpression 
of a suppressor of cytokine signaling 3, a molecule that mediates 
Th2 response by negative regulation of Th1 pathways (30). In ad-
dition, dermal Langerhans cells promote naive CD4+ cell polari-
zation toward Th2 cells (31). Moreover, Langerhans cells heavily 
express CD1a, which has the favorable capacity to present lipid 
antigens to T cells (32). In AD lesions, keratinocytes and inflam-
matory cells showed a massive expression of CD1a in comparison 
to other skin diseases and healthy controls (21). However, CD1a+ 
cells also present endogenous lipids to T cells and induce IL-22 
release (33). Thus, some studies speculate that AD is a Th2/Th22–
centric disease (34). Type 2 and 22 helper and cytotoxic T cells are 
selectively expanded in severe AD (35). Consistently, CD30, a mol-
ecule expressed on active Th2 cells, is elevated in the sera (36) 
and skin of AD patients, and it positively correlates with disease 
severity (36). Being preferably expressed on Th2 cells, detection of 
CD30 indicates disease acuity (37), and it better reflects AD activ-
ity than CD26, a molecule expressed on activated Th1 cells (38).

It has also been suggested that the imbalance is age-depend-
ent. For instance, the cutaneous lymphocyte-associated antigen 
(CLA)+ Th2/Th1 is observed in early-onset AD with some Th17 
polarization, whereas the adult form involves Th22 and cytotoxic 
T cells (39, 40). In contrast, another age-dependent observation 
noted a progressive increase of IL-17, IL-22, and IFN-Υ levels, with 
two peaks noted in regulatory T cells at 6 to 11 years and IL-9 at 12 

to 17 years (41).
In addition, it has also been suggested that a T-cell subset im-

balance is race-dependent. Dominance of Th2 cells is common 
among European Americans and Asians; however, Th17 and Th22 
cells characterize AD in Asians (39, 42), in whom IL-26, another 
upregulated cytokine in AD (43), may contribute to Th17 and Th2 
dominance (44). On the other hand, AD is skewed toward Th22/
Th2 in African Americans (34).

Apart from Th2 cells, type 2 innate lymphoid cells (ILC2s), skin-
resident lymphoid cells that lack B- or T-cell receptors, and baso-
phils are increased in AD (45). Both cells are key sources of type 
2 cytokines (46). Prostaglandin E2 negatively regulates ILC2s (47). 
However, ILC2 deficiency does not ameliorate AD in experimental 
models, suggesting that AD can be independent of ILC2s (48). On 
the other hand, ILC2 activation results in spontaneous AD inde-
pendently of the adaptive immune system (49).

Overall, there is a global imbalance in T-cell subsets with a pre-
dominance of Th2 cells. A controversy was noted regarding Th1, 
Th17, and regulatory and cytotoxic T cells. Other factors, such as 
polymorphisms of toll-like receptor (TLR)-2 and TLR-4, might con-
tribute to this (50).

Cytokines of type 2 immunity are pronounced in the acute 
phase

Figure 1 summarizes the cytokine network of type 2 immunity in 
AD.

Interleukin-4

Source, stimulation, and regulation

IL-4 is cardinally elevated in AD (51–54) with a few exceptions 
(55). IL-4rα is overexpressed in acute rather than chronic AD le-
sions (56). Many sources of IL-4 have been reported in the setting 
of AD. For instance, IL-4–producing CD4+ and CD8+ cells are high 
(57). Peripheral blood mononuclear cells (PBMCs) derived from 
AD patients show abnormal spontaneous production of IL-4 (55). 
T-cell hyperproduction of IL-4 interferes with the nuclear factor of 
activated T cells and activator protein-1, two transcription factors 
associated with the activation responsive element (58, 59). Mono-
nuclear cells (60), including CD4+ cells and CD8+ cells (61, 62), are 
increased in the peripheral blood and skin of AD patients (63) and 
were unexpectedly reported to negatively correlate with disease 
severity (19). Mastocytes are also a rich source of IL-4. IL-4–bear-
ing mastocytes are higher in the upper dermis of patients with AD 
and are a major source of IL-4 in 40% of cases (60). Furthermore, 
cutaneous infiltration of basophils in animal models of AD pro-
motes the development of AD-like lesions by producing IL-4 (64). 
In addition, CD86 expression on bursa of Fabricius cells (B cells) 
is higher in AD, and it results in greater IL-4 release (65). Hyperse-
cretion of IL-4 could be used at birth to predict the risk of AD. For 
instance, Phorbol 12-myristate 13-acetate/ionomycin-activated T 
cells isolated from the cord blood tend to secrete higher levels of 
IL-4 and a lower level of IFN-ϒ in persons that develop AD later in 
life (66).

Animal models of AD are widely used. IL-4 transgenic mice ex-
hibit a typical phenotype of AD manifestation, such as pruritic 
inflammatory disease with erythema and crusting, cutaneous 
infection, and cardinal histologic findings including spongiosis, 
eosinophilic and mononucleocytic infiltration, mastocyte degran-
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ulation, and an elevated level of immunoglobulin (Ig)G1, whereas 
the total IgE level was strain-dependent (8, 67). In addition, IL-4rα 
polymorphism in dogs is associated with canine AD (68). This em-
phasizes the role of genetics in AD. For instance, IL-4 −590C/T, a 
polymorphism resulting in increased promotor activity of the IL-4 
gene, has been intensely studied in AD patients. The TT genotype 
is associated with AD in Japanese (69), Chinese (70), Swedish (71), 
and other (72) populations. In contrast, the association between 
−590C>T and AD was absent in a Saudi cohort (73). IL-4 −589C>T 
showed a similar significant association in a Chinese population, 
which also exhibited a higher level of IL-4 (70). In addition, anoth-

er five polymorphisms within the IL-4 promotor region—namely, 
−3112C>T, −1803T>C, −327C>A, −326A>C, and −186G>A—were also 
associated with AD, although none of these affects promotor ac-
tivity (74). However, in a Swedish population with AD, seven poly-
morphisms of IL-4rα failed to show a significant association (71). 
In contrast, IL-4rα rs2234898, a synonymous polymorphism, is as-
sociated with adulthood AD in Japan (75). IL-4rα nonsynonymous 
mutations have also been studied. In a Saudi population, IL-4rα 
(I50V) is associated with AD, as well as the signal transducer and 
activator (STAT)-6 (G2946A) (73) and (C2892T) (76).

Various stimuli have been described as triggering IL-4 release 

Figure 1 | The cytokine network of type 2 immunity in atopic dermatitis. Type 2 helper T cells are a good source of cytokines of type 2 immunity. Together with type 
2 innate lymphoid cells, mastocytes, basophils, and invariant natural killer cells, they release IL-4, which mediates IgE switching, chemoattracts eosinophils, 
activates antigen-presenting cells to release CCL-17 and IL-6, and impairs the epidermis by reducing the expression of intermediate filaments and adhesion mol-
ecules. Together with eosinophils and type 2 innate lymphoid cells, type 2 helper T cells also release IL-5, which in turn chemoattracts eosinophils, contributing 
to eosinophilia in atopic dermatitis. Together with mastocytes and invariant natural killer cells, type 2 helper T cells secrete IL-13, which impairs the skin barrier 
integrity by suppressing filaggrin expression and impairing epidermal lipid metabolism. IL-31, a cytokine also released by type 2 helper T cells, contributes to 
pruritus. IL = interleukin, CCL= chemokine ligand, ILC2 = innate lymphoid cell 2, TSLP = thymic stromal lymphopoietin, iNK = invariant natural killer cell, APC = 
antigen presenting cell.
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in AD. Exogenous IL-4 promotes in vitro IL-4 production from 
CD4+ CD45RA+ naive T cells (77), and hence in vivo IL-4 might ex-
hibit an autocrine function. In addition, CLA expression on CD4+ 
cells is elevated in AD (57), and CLA+ naive T cells tend to autono-
mously produce Th2 cytokines (77). In contrast to naive T cells, 
CLA expression is diminished in plasmacytoid dendrocytes (78).

The role of dendrocytes in promoting IL-4 production is con-
troversial. For instance, CD1c+ myeloid dendrocytes show dimin-
ished release of TNF-α and IL-12p70, which subsequently tends to 
induce IL-4–bearing helper T cells (79).

Neuropeptides stimulate the secretion of IL-4 as well. Sub-
stance P and vasoactive intestinal peptide are elevated in AD, 
accounting for pruritus. Upon exposure to these neuropeptides, 
IL-4 secretion from AD-isolated PBMCs is pronounced (80). Pros-
taglandin E2 is an eicosanoid that is elevated in AD. It drives IL-4 
secretion through the 3',5'-cyclic adenosine monophosphate and 
phosphodiesterase enzyme (81).

Thymic stromal lymphopoietin (TSLP) is elevated in AD (82), 
and it positively correlates with AD severity (83). TSLP increase 
may be attributed to epigenetic factors such as promotor hypo-
methylation (84). In addition, IL-1β promotes TSLP secretion 
through the nuclear factor kappa-light-chain-enhancer of activat-
ed B cells (NF-ΚB) pathway (85), and NF-ΚB-dependent secretion 
of TSLP is observed through the TLR-3/ΔNp73 axis (86). Mastocytes 
are involved in TSLP production as well, although the exact mech-
anism is still unknown (87). TSLP transgenic mice exhibit AD-like 
manifestations accompanied by increased IL-4–producing CD4+ 
cells, which also co-express increased levels of IL-5, TNF-α, IgE, 
and IgG1 (88). IL-13, IL-31, and TNF-α were also reported to induce 
keratinocytes to produce TSLP (89). Taking into account that Th2 
cells express TSLP receptor, direct interaction between the two is 
expected (90). TSLP exerts its effect on other cells. For instance, 
it activates fibrocytes to produce collagen, predisposing AD sub-
jects to the risk of fibrosis (91). It also stimulates ILC2s (92) and 
regulates eosinophil migration in AD (93). TSLP also activates in-
variant natural killer cells to produce Th2 cytokines such as IL-4 
and IL-13 (94). IgG isolated from AD patients may also induce in-
variant natural killer cells to secrete IL-4 (95). In contrast, natural 
killer cells, including the CD4+ and CD8+ subpopulations, were 
found to be deficient in AD and, where IL-4rα is blocked, the natu-
ral killer cell count is restored (96, 97), suggesting that IL-4 exerts 
negative feedback on these cells. Consistently, upon expansion of 
CD4− CD8− double negative invariant natural killer cells, AD is 
suppressed (98).

Although IL-4 is a key player in AD, knocking out STAT-6, an 
important IL-4 signaling molecule, would still produce AD-like le-
sions in mice. However, these mice fail to produce IgE and Th2 
cytokines. Cutaneous caspase-1, IFN-Υ, IL-12, and IL-18 were all 
elevated. This suggests that type 2 immunity is not mandatory for 
AD development (99).

Effect

IL-4 exerts its effect by binding to its receptor. IL-4rα is a com-
mon subunit shared between IL-4r and IL-13r. In AD lesions, 
IL-4rα is expressed on melanocytes, vascular endothelial cells, 
and perivascular inflammatory and stromal cells, explaining the 
post-inflammatory hyperpigmentation observed in AD and other 
inflammatory skin diseases (100). IL-4 impairs the skin barrier in 
AD. It downregulates keratin-1 and -10, two epidermal intermedi-
ate filaments; desmoglein-1 and desmocollin-1, two adhesion mol-

ecules; and ceramide, an epidermal lipid (89, 101, 102). However, 
it upregulates the C-C motif chemokine ligand (CCL)-3L1, CCL-8, 
CCL-24, CCL-25, CCL-26, the C-X-C motif chemokine ligand (CXCL)-
6, and CXCL-16, seven AD-related chemokines. Among these, CCL-
8 has the capacity to recruit IL-5+ Th2 cells (103). Production of 
CCL-26, an eosinophil chemotaxin, takes place through the IL-4 
/ Janus kinase (JAK)-1 and -2/STAT-6 pathway (104). In addition, 
IL-4 upregulates other proinflammatory molecules such as IL-1α, 
IL-12rβ2, IL-25, IL-19, IL-20, and IL-31rα. On the other hand, IL-4 
downregulates anti-microbial peptides or the factors involved 
in their production, such as IFN-Κ and TLRs, explaining the low 
count of TLR-2+ and TLR-4+ PBMCs (14, 105, 106). In addition, IL-4 
may impair the mobilization of anti-microbial peptides from cyto-
plasm (107). IL-4 also downregulates the NLR family pyrin domain 
containing 3 (108). All these mechanisms expose AD patients to a 
high risk of cutaneous bacterial, viral, and fungal infections (20). 
IL-4 downregulates TNF-α; lymphotoxin-β, an IgE-suppressor; 
and TNF superfamily member-18, a T-cell regulator (109, 110).

AD-derived PBMCs are hyperresponsive to IL-4 (111). IL-4 pro-
motes the expansion of cutaneous lymphocytes in the presence of 
IL-2 (61), and it augments PBMC proliferation independently from 
IL-2 (112). IL-4 exerts a chemotactic effect on eosinophils in AD pa-
tients (113). CCL-3 (114) and CCL-11 (52, 115) are overexpressed in 
AD lesions. IL-4 upregulates the fibroblast-release of CCL-11, an 
eosinophil-activating and chemoattracting agent (116). Putting it 
all together, IL-4 imposes direct and indirect chemotactic roles on 
eosinophils, increasing their count in AD, which also correlates 
with AD severity (63).

IL-4 drives spontaneous IgE production, explaining the el-
evation of IgE in AD (117). Although IL-4 is associated with an 
increased IgE level by mediating IgE class switching (118), de-
velopment of AD is IgE-independent (119). IgE production posi-
tively correlates with age (120) and severity of AD (121), and it is 
antagonized by IFN-Υ, which is typically suppressed by IL-4 (59) 
and, subsequently, the regulatory mechanism of IgE production 
is lost (122). At birth, maternal and cord-blood IgE may predict the 
risk of AD (123, 124), whereas at 6 months of age the IgE level may 
predict the prognosis of AD during later childhood (125). Soluble 
CD23, a low-affinity IgE receptor, is elevated in AD (51) and is in-
dependently augmented by IL-4 and IFN-ϒ, although the latter 
may antagonize the former’s effect (7, 126). CD23 is expressed on 
CD20+ B cells as well as non-B and non-T cells (CD3− CD20−) (127). 
The high-affinity IgE receptor FcεRI is overexpressed in plasmacy-
toid dendrocytes, impairing the expression of major histocompat-
ibility complexes-1 and -2, enhancing the production of IL-10, and 
promoting plasmacytoid dendrocyte apoptosis (78). The intracel-
lular expression of the receptor’s alpha chain is attributed to IL-4, 
whereas the expression of the surface receptor is induced through 
a different mechanism (128).

CCL-17, CCL-18, and CCL-22, all dendrocyte-activated chemoki-
nes, are differentially pronounced in AD (43, 54, 64, 83, 115, 
129–132). Interestingly, IL-4 activates different antigen-presenting 
cells, contributing to this observation. It enhances IL-31/IL-31rα 
interaction, which in turn augments CCL-17 and CCL-22 (133). In 
addition, IL-4 induces Forkhead Box Q1, a transcription factor, 
in human monocytes and macrophages, and it stimulates their 
migration. This is accompanied by a lower expression of claudin-1 
and plexin-C1, two migration-regulating genes (134). CCL-22, but 
not CCL-17, correlates well with AD activity (135, 136), whereas both 
CCL-17 and CCL-22 correlate with AD severity (137). In contrast, 
IL-10, an anti-inflammatory cytokine, was also found to induce 
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HaCaT cells, immortalized human keratinocytes, to release CCL-
17 (138). Being a C-C motif chemokine receptor (CCR)-4 ligand, 
CCL-17 secretion recruits CLA+ CCR-4+ T cells (139), explaining 
the high counts of CCR-4+ CD4+ T cells (140), which positively 
correlates with AD and the IgE level (9). Chemokine-like factor-1, 
a CCR-4 ligand, is highly expressed in AD scales and positively 
correlates with the IgE level as well (52).

In IL-4 transgenic mice, skin-barrier proteins as well as im-
munocytes and cytokines are dysregulated. IL-4 downregulates 
filaggrin (141–143). It also suppresses the epidermal expression 
of loricrin. p300/CBP is a common molecule that is competed for 
in two pathways: loricrin synthesis and IL-4/STAT-6. IL-4 overex-
pression consumes p300/CBP, which in turns suppresses loricrin 
production. Upon inhibition of STAT-6, loricrin expression nor-
malizes (105). In addition, IL-4 alters the composition and me-
tabolism of cutaneous lipids (89, 144) and tight junctions (145), 
contributing to the skin-barrier defect observed in AD. At the level 
of the immune system, IL-4 overexpression doubles cytokines lev-
els several hundredfold (146). In addition, lymphocytes appear to 
spontaneously proliferate, and the total number of dendrocytes, 
macrophages, and natural killer cells increases in lymphoid tis-
sue with potential migration toward the skin (147). Adhesion 
molecules, including intercellular adhesion molecule (ICAM), 
vascular cell adhesion molecule (VCAM), E-selectin, L-selectin, 
P-selectin, and P-selectin glycoprotein ligand-1, are also overex-
pressed (148, 149). In contrast, L-selectin is diminished in plasma-
cytoid dendrocytes (78).

CCL-27, a T-cell homing cytokine, is elevated in AD and psoria-
sis, suggesting disease non-specificity. Its level in AD positively 
correlates with AD severity, IL-2r level, eosinophil count, and 
CCL-17 level (150). Both the CCL-27 and its receptor, CCR-10, are es-
sential for the development of AD inflammation, which regresses 
with CCL-27–antagonizing antibodies (151). CCR-4, the CCL-17 re-
ceptor, and CCR-10 may co-express in lymphocytes in AD (152).

CX3CR1, also known as fractalkine, is another disease non-spe-
cific chemokine. Its expression is upregulated in endothelial cells 
in AD and psoriatic lesions. However, an elevated serum level is 
specific to AD and correlates with disease severity (153).

In addition, angiogenesis is affected. Animal models of AD 
show an increase in interendothelial junctional cleft length and 
number, and an increase in capillary sprout density, and they ex-
hibit an overall disorganized network of capillaries (154), which 
can be attributed to the increased expression of vascular endothe-
lial growth factor but not its receptors (155). IL-4 (109), IL-6, and 
IFN-Υ induce vascular endothelial growth factor-A, which also 
correlates with AD severity, together with other pro-angiogenic 
molecules (156).

Interleukin-5

IL-5 is upregulated in AD and correlates with disease sever-
ity (137). IL-5 is secreted from PBMCs (157) in addition to dermal 
eosinophils isolated from AD lesions (158) and ILC2s, as evident 
in filaggrin-deficient mice (49). In contrast, some studies have 
shown that the IL-5 serum level in AD is comparable to that in 
healthy subjects (159). IL-5rα is also elevated in acute and chronic 
AD lesions in comparison to normal skin (56).

The role of IL-5 in AD development was studied further in IL-
4, IL-5, and IL-13 transgenic mice that develop an AD phenotype 
(160). IL-5 is important for eosinophil development, proliferation, 
and survival (161), and hence peripheral blood eosinophilia is 

more common in AD (162). Peripheral blood eosinophilia in AD 
could be attributed to IL-5 genotypes. For instance, the IL-5 –703C 
allele is more prevalent among AD patients with eosinophilia (eo-
sinophils > 15%) (163).

IL-5 has been speculated to play a role in AD pathogenesis (161) 
For instance, IL-5 is capable of downregulating the NLR family py-
rin domain containing 3 (108), and hence it works synergistically 
with other Th2 cytokines in predisposing AD patients to a high 
risk of cutaneous infection.

Interleukin-6

IL-6 is elevated in AD with a few contradictory reports (156). It 
positively correlates with disease severity (19, 35) and negatively 
with filaggrin expression (164). IL-6 increase is attributed to vari-
ous factors, including increased production and reduced degra-
dation. For instance, reduced activity of mastocyte-released chy-
mase, an IL-6–degrading molecule, was reported in AD patients 
(165). Fibroblasts are a major source of IL-6 (166). In addition, PB-
MCs isolated from AD patients show a significantly greater release 
of IL-6 compared to healthy controls (167). Likewise, dendrocytes 
isolated from AD infants show increased release of IL-6, which di-
minishes after 1 year (168). This provides another potential tool 
for early prediction of AD.

Multiple reports have confirmed the role of IL-6 in AD patho-
genesis. For instance, interruption of IL-6r improves the severity 
of AD; however, it increases the risk of bacterial superinfection 
(169). IL-6 rs1800795 (−174C>G) is associated with an increased 
risk of AD (170), whereas IL-6r rs2228145 is associated with more 
persistent AD (171).

Interleukin-9

IL-9, IL-9r, and Th9 cell counts are high in AD (172), in which 
the first positively correlates with disease severity (173). IL-9 was 
found to mediate AD in T-box transcription factor TBX21 and 
STAT-6 double knockout mice. IL-9 release is enhanced by TSLP 
(174), and the cytokine itself promotes IL-8 secretion (175). IL-9 
−4091G>A is associated with AD (176).

Interleukin-10

The level of IL-10 is controversial in AD. For instance, AD derived 
from PBMCs may show diminished (177) or pronounced (178) 
spontaneous expression of IL-10. IL-10 negatively correlates with 
AD severity (19). TLR-10 is thought to drive IL-4–mediated IL-10 
suppression, which in turns promotes disease chronicity (179). 
Monocyte-derived dendrocytes exhibit increased IL-10 release 
(180); however, the IL-10–producing regulatory B-cell count is low 
in AD (181). Two factors might enhance IL-10 production in AD; 
IgG induces IL-10 production from invariant natural killer cells 
(95) and high-affinity IgE receptor induces IL-10 production from 
plasmacytoid dendrocytes (78).

Being an anti-inflammatory cytokine, IL-10 plasmid amelio-
rates AD-like manifestations in vivo (182), suggesting that IL-10 
plays a protective role in AD (138). However, IL-10 also downreg-
ulates antimicrobial peptides, and hence it increases the risk of 
cutaneous infections (183). In addition, dendrocytes isolated from 
AD infants show increased release of IL-10, which diminishes af-
ter 1 year (168). This provides another potential tool for early pre-
diction of AD.
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Looking into IL-10 polymorphisms might be helpful. IL-10 
−819G>A is associated with AD (184), whereas IL-10 −1082G>A is 
associated with a higher IL-10 level in AD (185), although it lacks 
a direct association with the disease itself (186). In addition, IL-10 
genotyping seems to interfere with the IgE level in AD. A common 
haplotype, TSS-distal haplotype (TGAC), is associated with a high 
IgE level (187). In contrast, two other haplotypes are associated 
with low IgE (188).

Interleukin-13

IL-13 and IL-13rα are elevated in AD (54, 115, 132, 189, 190). In ca-
nines with AD, IL-13 was proposed to have a more important role 
in exhibiting AD phenotype than IL-4 (191). IL-13 is released from 
PBMCs, including CD4+ and CD8+ T cells, yet the highest release 
is found from epidermal Langerhans cells (16, 52, 100, 180, 192, 
193). In AD lesions, two-thirds of IL-13 is produced by T cells and 
mastocytes (192), where a unique IL-13+ IL-22+ subpopulation has 
been identified (194). Taking into consideration that IL-13 medi-
ates IgE class switching (118), CD4+ IL-13+ cell count and serum 
level correlate with the IgE level and disease severity (63, 137, 193). 
Being a Th2 cytokine, IL-13 is pronounced in acute AD more than 
in chronic AD (195) in a CD-2–independent manner (157).

Underlying polymorphisms of IL-13 and IL-13rα may account 
for IL-13 and IL-13rα1 overexpression (196). For instance, AD was 
found to be associated with five polymorphisms: IL-13 rs3091307, 
rs20541, and rs1295685 as well as IL-13rα1 rs2265753 and rs2254672 
(197–201), where IL-13 rs20541 also correlates with the serum IgE 
level (202). Taking into consideration that soluble CD-14 corre-
lates positively with AD (203), CD-14 rs2569190 was found to be 
associated with a lower level of IL-13 production and it seems to 
be protective (200).

IL-13 also interferes with the composition and metabolism of cu-
taneous lipids (89, 144). In addition, it impairs the synthesis and 
secretion of antimicrobial peptides (14, 106, 107), and it downreg-
ulates the NLR family pyrin domain containing 3 (108). Neverthe-
less, IL-13 induces keratinocytes to secrete CCL-22, a CD4+ CCR-4+ 
T-cell chemoattractant (204). It also induces keratinocytes to se-
crete matrix metalloproteases, which may degrade the basement 
membrane in AD. IL-13 was also found to suppress in vitro pro-
duction of type 4 collagen, a major component of the basement 
membrane; p63, a transcription factor; integrin α6; involucrin; 
filaggrin; and corneodesmosin (141–143, 205, 206). IL-13–induced 
filaggrin suppression is mediated via the transcription factor ovo-
like transcriptional repressor-1 (207). However, and unlike IL-4, IL-
13 fails to exhibit a chemotactic effect on eosinophils (113).

Interleukin-25

The level of IL-25 is controversial. Diminished cord blood IL-25 
has been reported in association with a high risk of infantile AD 
(208). Consistently, serum IL-25 is decreased in AD patients (106). 
However, cutaneous IL-25 overexpression has been reported in AD 
(49), probably produced by dermal dendrocytes (209). Parallelly, 
the relationship between Th2 cytokines and IL-25 is bidirectional. 
For instance, IL-4 has the capacity to augment IL-25 production 
(109). Reciprocally, IL-25 stimulates ILC2s to produce type 2 cy-
tokines (92). Although it correlates with the degree of skin dryness 
and acute lesions in AD (210), the effect of IL-25 on the expression 
of structural epidermal proteins such as filaggrin is controversial 
(209, 211).

Interleukin-31

IL-31 is a novel Th2 cytokine that generally tends to be elevated 
in AD (82, 212, 213), with a few exceptions (214). It positively cor-
relates with the level of other Th2 cytokines, such as IL-4 and IL-
13, and the IgE level, whereas its correlation with AD severity and 
pruritus is controversial (212, 213, 215). Resembling IL-4 and IL-13 
activity against filaggrin, IL-31 also downregulates it (141–143). 
IL-31 expression is elevated in models with itching behavior, ex-
plaining how observed AD-associated pruritus (216) is ameliorat-
ed upon blockage (217). The suggested mechanism of pathogen-
esis involves the IL-31/IL-31r/STAT3/β-endorphin axis (218), and it 
employs neuropeptide natriuretic polypeptide β (219).

 IL-31 interacts directly with eosinophils via IL-31r, which in the 
presence of keratinocytes promotes the production of IL-1, IL-6, 
CXCL-1, CXCL-8, and CCL-2 (54, 220), explaining the observed el-
evation in CXCL-1 (43). IL-31rα is also expressed on keratinocytes, 
nerve fibers, and skin-infiltrating macrophages in AD. In periph-
eral blood, IL-31 expression is restricted to CD45RO+ CLA+ T cells, 
whereby CLA+ cells show a greater capacity to secrete IL-31 in 
comparison to healthy controls (221, 222). In comparison to acute 
AD, IL-31–bearing T cells are more frequent in chronic AD and co-
express IL-13 and IL-22 and rarely IFN-Υ and IL-17 (13). Although 
different IL-31 polymorphisms—namely, IL-31 rs10847385 and 
rs7974857—fail to show a significant association with AD (223), 
another two polymorphisms are associated with AD. For instance, 
the rs6489188AA genotype seems to be protective, whereas the 
rs11608363AA genotype is more prevalent in AD (224).

Cytokines of type 1 immunity are attenuated in the acute 
phase

Figure 2 summarizes the cytokine network of type 1 immunity in 
AD.

Interferon-ϒ

The IFN-Υ level is generally low in AD (177) with a few exceptions 
(115, 132). It is suppressed by IL-4 and vasoactive intestinal pep-
tide, whereby the latter molecule is a neuropeptide known to be 
elevated in AD. However, the effect of substance P is controversial 
(80, 225). Interestingly, the IFN-Υ level fails to recover upon IL-2 
stimulation, suggesting a potential intrinsic dysfunction (226). 
Although IFN-Υ  mRNA transcripts are elevated, its release is re-
duced (227). Other studies found that IFN-Υ  is spontaneously pro-
duced intracellularly, and that IFN-Υ–producing cells are rather 
increased in AD. However, upon stimulation, IFN-Υ extracellular 
secretion is unexpectedly low (226, 228). In contrast, multiple in-
dependent studies have concluded that IFN-Υ–producing CD4+ 
cells, CD45RO+ in particular (229), and CD8+ cells are significant-
ly low in the peripheral blood of AD patients (57, 62). One study 
estimated that 25% of CD4+ T cells and 30% of CD4− T cells are 
capable of producing IFN-Υ (230). Furthermore, there is some evi-
dence suggesting that the IFN-Υ level in AD is age-dependent; it 
increases in infancy and decreases in childhood. This observation 
points toward a potential regulatory function of IFN-Υ in inhibit-
ing mononucleocyte differentiation toward Th2 and subsequently 
controlling the production of allergen-specific IgE during infancy 
(231). However, there are many other contradicting reports docu-
menting normal serum levels of IFN-Υ in the setting of a normal 
(232) or elevated (6) IL-4 level, a high level of IFN-Υ in the setting 
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of high IL-4 (53), and a high level of Th1 cytokines in the setting of 
a normal IgE level (233) given that IFN-Υ typically tends to inhibit 
IgE production (122).

These controversial observations may point toward different 
mechanisms contributing to the low level of IFN-Υ, including a 
potential genetic component resulting in suppression of IFN-Υ 
transcription, defect of post-transcriptional mechanisms, and 
dysfunction of CD4+. However, the rarely seen high level of IFN-Υ 
might be attributed to the weakness of IFN-Υ responses in cutane-
ous monocytes and monocyte-derived dendrocytes, probably due 
to decreased expression of IFN-Υ receptor-2 (234). Subsequently, 
to compensate for IFN-Υ receptor-2 under-expression, IFN-Υ is up-

regulated. Another explanation for the variation in IFN-Υ expres-
sion is the variation in AD subtypes. Because AD is classified into 
intrinsic or extrinsic, IFN-Υ was reported to be high in the former 
type and low in the latter type (157) and, if the subtype of AD was 
not specifically looked for, contradictory observations are re-
ported. Interestingly, IFN-Υ–producing CD1a-reactive T cells were 
enriched in AD blood and skin in response to an allergen (house 
dust mite) challenge (235).

IFN-Υ expression is TSLP-independent, as already evident in 
TSLP transgenic mice (88). IFN-Υ does not seem to contribute to 
the increased risk of infection in AD, and it may instead exert a 
protective effect. For instance, IFN-Υ induces human β-defensin-3, 

Figure 2 | The cytokine network of type 1 immunity, type 3 immunity, and miscellaneous cytokines in atopic dermatitis. Type 1 helper T cells are the cardinal source 
of cytokines of type 1 immunity. Type 1 helper T cells release IFN-Υ, which promotes the release of human beta defensin-3 and suppresses IL-4–mediated IgE 
switching. Type 1 helper T-cell activation is promoted by IL-18, a cytokine released by keratinocytes and antigen-presenting cells. However, type 1 helper T-cell 
suppression is mediated by cytokines of type 2 immunity, including IL-4. Likewise, cytokines of type 3 immunity are cardinally secreted by type 17 helper T cells 
upon IL-23 activation with further enhancement by the thymic stromal lymphopoietin. Upon release, IL-17 promotes human beta defensin-2 release and sup-
presses filaggrin expression. IL = interleukin, HBD = human beta defensin, ILC2 = innate lymphoid cell 2, TSLP = thymic stromal lymphopoietin, iNK = invariant 
natural killer cell, APC = antigen presenting cell.
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an antimicrobial peptide suppressed by IL-4, IL-10, and IL-13 (14, 
236). In addition, IFN-Υ suppresses ILC2 proliferation and produc-
tion of type 2 cytokines (96).
 
Interleukin-2

Although IL-2 production is either low (237) or normal (6) in 
AD, its receptor, IL-2r, is elevated in AD sera and skin (7, 53, 167, 
237–240) and it correlates with AD activity and severity (239). It 
has been proposed that high levels of IL-1α may enhance IL-2r ex-
pression (241). The effect of IL-2 varies in AD based on the target 
cell. Although IL-2 promotes the differentiation of PBMCs toward 
CD8+ T cells, it also promotes the differentiation of skin-derived 
lymphocytes toward CD4+ T cells (61). In AD patients and healthy 
controls, intradermal injection of IL-2 induced pruritus, erythema, 
spongiosis, exocytosis, dermal mononucleocyte infiltration, and 
ICAM-1 expression (242).

Interleukin-12

IL-12 is elevated in AD (115, 121, 132, 238), and IL-12–secreting cells 
are higher in chronic rather than acute AD, suggesting that IL-12 
may promote AD chronicity (195). This is consistent with the afore-
mentioned phase-dependent immunity (acute vs. chronic). Some 
reports have documented a positive correlation between IL-12p40 
and AD severity (121). Consistently, blockage of IL-12p40 resulted 
in complete remission of AD in one-third of patients, partial re-
mission in another third, and lack of response in the remaining 
third (243). Considering that IL-12p40 is shared between IL-12 and 
IL-23, the observed promising outcome cannot be fully attributed 
to IL-12; it may instead reinforce the importance of IL-23/IL-17 axis.

Expression of IL-12rβ seems to be regulated by epigenetic fac-
tors (244). In addition, two polymorphisms of the promotor region 
of IL-12r—namely, IL-12rβ −111A>T and −2C>T—are associated with 
an increased risk of AD (245). There are at least five other poly-
morphisms and haplotypes within the IL-12r gene that predispose 
patients to AD (246–248).

Interleukin-15

Epidermal and dermal IL-15 overexpression was observed in AD. 
IL-15 is particularly expressed by keratinocytes, CD1a+ dendro-
cytes, CD11b+ dendrocytes, CD68+ macrophages, and vimentin+ 
fibroblast (249). In contrast, IL-15 was not detectable in interstitial 
fluids collected from chronic AD (190), was reduced upon in vitro 
stimulation of AD-derived monocytes (250), and was comparable 
to controls in cases with severe AD (156).

Interleukin-18

With a few contradictory reports (251), IL-18 is elevated in AD pa-
tients and animal models (35, 83, 117, 121, 129, 190, 252–254), pos-
sibly due to decreased degradation (254). The level of IL-18 posi-
tively correlates with disease severity, transepidermal water loss 
(83, 117, 121, 137), and eosinophil counts (253), but its correlation 
with the serum IgE level is controversial (252, 253). IL-18 rs795467 
(255) and rs187238 (256) may be associated with AD. The former 
polymorphism has been reported to be associated with psoria-
sis, rather than AD, in a Japanese cohort (257), whereas the latter 
polymorphism correlates with CCL-17 and IgE levels (129). Consist-
ently, and as discussed above, in the absence of type 2 immunity 

in animal models, development of AD-like lesions was possible 
(99) and IL-18 seems to contribute to AD-like manifestations (258) 
by inducing Th1 cytokines. For instance, in the presence of IL-2, 
IL-18 induces PBMCs to secrete IL-13 and IFN-Υ (259). However, re-
sponse to IL-18 blockage is still inconclusive (260, 261).

Interleukin-33

IL-33, secreted by mastocytes and keratinocytes (87, 262), is el-
evated in AD (82). Filaggrin deficiency induces IL-33 (263), which 
in turns induces keratinocytes to secrete a wide spectrum of pro-
inflammatory cytokines and antimicrobial peptides (262, 264). On 
the other hand, it is evident that IL-33 is capable of suppressing 
human β-defensin (264). In AD patients, corneal IL-33 correlates 
with the severity of pruritus and lichenification (265). In contrast, 
in IL-33 transgenic mice lacking B and T cells, IL-33 activates 
ILC2s, resulting in AD-like inflammatory lesions (92). IL-33 indi-
rectly polarizes T cells toward type 2 immunity. It overexpresses 
OX40L on ILC2s, which in turns deviates OX40+ T cells toward 
type 2 immunity (266). Polymorphism of its receptor, SH2 −226999 
G>A, was found to be associated with the expression level of both 
the receptor and IgE (267). In the mouse model of AD, IL-33 medi-
ates AD through ILC2s (268).

Tumor necrosis factor-β

TNF-β, released by Th1–like cells, is low in AD. TNF-β–treated 
PBMCs were found to inhibit Th2 cytokines and to promote IFN-Υ 
secretion (269). On the other hand, there is a single report doc-
umenting the TNF-β increase among AD patients (115). TNF-β 
252A>G was studied in a Saudi cohort, and the results showed a 
significantly greater prevalence of GG and AA genotypes and a 
significantly lower prevalence of GA genotypes in AD cases com-
pared to controls (270). However, the distribution of these geno-
types does not appear to be dose-dependent, and hence the role 
of A/G alleles in AD is questionable.

Cytokines of type 3 immunity are controversial

The level of IL-17A and IL-17F is controversial. IL-17A was reported 
to be elevated and positively correlated with AD severity, particu-
larly the intrinsic subtype (20, 132, 263). IL-23, a Th17 activator; 
IL-19; and IL-22 are also pronounced (132, 238). Levels of IL-17A 
and IL-22 positively correlate with transepidermal water loss (83, 
137), and IL-22 promotes the production of human β-defensin-2, 
an antimicrobial peptide (106). In contrast, transcripts of both IL-
17A and IL-23A were reported high in pruritic AD lesions in com-
parison to nonpruritic AD lesions (215). IL-17–producing T cells 
account for 2% of the peripheral blood in AD patients (230) and 
correlate with disease severity as well (42). In contrast, in AD skin, 
intracellular production of IL-17 was limited to papillary dermal 
CD3+ CD4+ T cells.

IL-17 promotes naive T-cell polarization toward Th2 cells (271). 
It also induces keratinocyte production of granulocyte-mac-
rophage colony-stimulating factor (GM-CSF), TNF-α, IL-8, CXCL-
10, vascular endothelial growth factor, and human β-defensin-2 
(42), and this explains the observed CXCL-10 elevation in AD (43, 
115, 130, 131). Accordingly, it seems that IL-17 induces many genes 
involved in the innate immunity. IL-17 also suppresses the expres-
sion of filaggrin (272) and cutaneous tight junction-related genes 
and proteins (272). The IL-23/IL-17 axis might be diminished in AD. 
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Considering that IL-17 promotes human β-defensin production, 
IL-17 reduction is proposed to promote cutaneous infections. The 
observed decrease in Th17 cells negatively correlates with CCL-17 
expression, IgE levels, and eosinophil count (273).

IL-17 overexpression might be attributed to genetic factors. For 
instance, IL-17 −152G>A is more common among AD patients (263) 
and predisposes them to a more severe phenotype (274). However, 
IL-17F rs763780 failed to show any significant association with AD 
(275). IL-17 production is also inducible by TSLP (276) and AD-
derived IgG (95). IL-17 seems to contribute to expressing the AD 
phenotype. In a CD4–depleted animal model of AD, animals were 
still capable of displaying AD manifestations mediated by IL-17 
and IL-22 (277).

IL-22 is elevated in AD (132, 278). It is secreted by both masto-
cytes (279) and Th22 cells, and it positively correlates with CCL-17 
(278). There is a growing body of evidence suggesting that IL-22 
contributes remarkably to AD pathogenesis. For instance, IL-22 
downregulates profilaggrin or filaggrin expression in keratino-
cytes (280). In addition, it induces epidermal hyperplasia and me-
diates keratinocyte proliferation (281).

Figure 2 summarizes the cytokine network of type 3 immunity 
in AD.

Miscellaneous

Figure 2 summarizes the other cytokine interaction in AD.

Interleukin-1

IL-1α, IL-1β, and IL-1rα are generally high in AD (190), and PBMC 
production of IL-1 is increased in vitro with further augmentation 
by histamine (240). On the other hand, AD-derived monocytes 
show reduced IL-1 release (282). IL-1β correlates with AD severity 
(137). IL-1 has also been implicated in putting severe AD patients 
at high risk of cardiovascular disease (283). Genetic polymor-
phisms have been investigated. The IL-1r pst-I 1970 T allele seems 
to play a protective role against AD, whereas the C allele is more 
prevalent among AD patients (284). No association has been ob-
served between AD and IL-1β –511T>C or IL-1β +3953T>C (285).

Interleukin-8

The level of IL-8, a cytokine released by PBMCs (286), is contro-
versial. Although it is low in AD patients (156), it is still detectable 
in the majority of AD cases in comparison to other skin diseases 
(287), and it has even been reported to be significantly elevated 
in AD compared to controls (83, 190, 238, 288). AD-derived T cells 
have shown a weak in vitro chemotactic response to IL-8 (289). 
The increase of IL-8 and weakness of T-cell response could be 
viewed from two aspects. T cells might have an intrinsic defect 
in their response to IL-8 and, hence, IL-8 tries to compensate by 
increasing its release. The other explanation is that IL-8 is origi-
nally elevated (because of an intrinsic defect or in response to a 
stimulus), and thus T cells attenuate their chemotactic response 
as a self-protective mechanism. AD scales contain a high level of 
IL-8, positively correlating with AD severity (137). IL-31 and IL-33 
stimulate IL-8 secretion from eosinophils and fibroblasts, respec-
tively (166). However, lesional skin biopsies have exhibited vari-
able patterns of IL-8 stain (290).

Interleukin-16

Low levels of IL-16 transcripts have been detected in AD-derived 
keratinocytes and Langerhans cells (40% of CD1a+ cells). Al-
though it is low in AD, IL-16 is absent in normal keratinocytes and 
Langerhans cells. The increase of IL-16 is significant in acute rath-
er than chronic AD (291) and its level correlates with the severity 
of AD, the level of IgE, and the number of CD4+ infiltrating cells 
(288, 292, 293).

Interleukin-36

IL-36 is elevated in the skin and sera of AD patients (43, 294).

Interleukin-37

The available evidence suggests that IL-37 is elevated in AD (43) 
with a few exceptions (295). Being an anti-inflammatory cytokine, 
IL-37 activates FoxP3+ regulatory T cells and ameliorates experi-
mental AD (296). In addition, IL-37 seems to contribute to athero-
sclerosis in AD (297).

Granulocyte-macrophage colony-stimulating factor

Some studies have documented high expression of GM-CSF re-
ceptor (189), possibly attributed to the low spontaneous release 
of GM-CSF as evident in AD-derived PBMCs (178). On the other 
hand, AD lesions exhibit a strong GM-CSF stain. GM-CSF is mainly 
produced by keratinocytes and is cable of stimulating PBMCs in a 
dose-dependent manner. Keratinocyte-secreted GM-CSF may con-
tribute to AD chronicity by enhancing mononucleocyte survival 
(298, 299). Consistently, the α-subunit of GM-CSF is also increased 
in chronic AD lesions in comparison to the acute phase (56). In 
addition, intradermal injection of GM-CSF results in a progressive 
accumulation of CD1a+ cells (298), explaining the high number of 
cutaneous CD1a+ cells in intrinsic and extrinsic AD (300). On the 
other hand, IL-4, IL-5, and IFN-Υ induce eosinophils to express the 
α and β subunits of GM-CSF receptor (189). Genotyping of GM-CSF 
may help in predicting AD severity (301).

Macrophage migration inhibitory factor

Macrophage migration inhibitory factor, a cytokine with a T-cell 
activation function, is elevated in the sera and diffusely expressed 
in the epidermis of AD patients (302). Unstimulated AD-derived 
PBMCs spontaneously secrete high levels of this factor, and with 
stimulation, its level is further augmented (303). Consistently, 
lacrimal fluids collected from patients with severe AD contain a 
significantly greater concentration of this cytokine in comparison 
to those with a milder disease (304). This factor is also elevated 
in animals with AD (305). When neutralized, experimental AD is 
ameliorated (306).

Tumor necrosis factor-α

The level of TNF-α is controversial. Although some studies have 
found its serum and cutaneous levels to be elevated (53, 156), 
others have reported a lower level of TNF-α secretion (177, 178), 
probably due to IL-4 suppressive effect (109). Expression of TNF-α 
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receptor 1 and 2 subunits is increased in AD (307). Polymorphisms 
of TNF-α are controversial as well. No association was observed 
between AD and TNFA −238G>A or −308G>A in one study (285), 
whereas AD was found to be associated with the GG genotype of 
both polymorphisms in a second study (308) and with the −308GA 
genotype in a third study (270).

Transforming growth factor-β

The role of TGF-β is controversial in AD. For instance, AD is associ-
ated with a low-producer genotype of TGF-β, namely 869TT (309). 
Consistently, TGF-β level is significantly low in AD (288). Likewise, 
PBMCs from AD patients show a decreased level of TGF-β (178). 
Conversely, expression of TGF-β and its receptors was reported 
to be high (54, 238). Parallelly, experimental models suggest that 
blockage of TGF-β receptor alleviates AD-like manifestations and 
also improves levels of TNF-α, TGF-β1, TGF-βr1, IL-1β, IL-6, and IgE 
(310). Nevertheless, TGF-β was found to inhibit IgE production. 
For instance, knocking out the TGF-β signaling molecule aug-
ments the level of antigen-specific IgE (311).

Cytokines and cytokine antagonists in the management of 
atopic dermatitis

Understanding the pathogenesis of AD is essential in the ad-
vancement of drug development. Augmented cytokines could be 
selectively antagonized by designing antibodies neutralizing the 
cytokine itself or blocking its receptor. Small molecules interfer-
ing with the downstream signaling pathway have been devel-
oped, inhibiting JAK and phosphodiesterase-4 in particular. Table 
1 summarizes the status of cytokines and cytokine antagonists as 
retrieved and filtered from www.clinicaltrials.gov. We categorized 

these agents into antagonists of cytokines in type 2 immunity 
(IL-4, IL-5, IL-13, IL-31, TSLP, and CCR-4), IL-2, antagonists of cy-
tokines in type 3 immunity (IL-23/IL-17 axis and IL-22), antagonists 
of the IL-1 family (IL-1, IL-18, and IL-36), antagonists of JAK, antag-
onists of phosphodiesterase-4, and antagonists of IL-1 receptor-
associated kinase-4. The current literature review suggests that 
many of these cytokines are inconclusively elevated, and hence 
we assume that these antagonists are being “retargeted” toward 
AD control.

Nevertheless, where a cytokine is diminished, recombinant cy-
tokine “replacement” could help in restoring its normal level. For 
instance, there are multiple reports of systemic administration of 
IFN-Υ in AD (312).

To date, four agents have obtained Food and Drug Administra-
tion (FDA) and/or European Medicines Agency (EMA) approval 
(313), including Dupilumab, an IL-4rα antagonist (FDA and EMA 
2017); Crisaborole, a phosphodiesterase-4 antagonist (FDA 2016, 
EMA 2020); Baricitinib, a small-molecule JAK inhibitor (EMA 
2020); and Tralokinumab, an IL-13 antagonist (EMA 2021).

Conclusions

The cytokine profile in AD is complex and controversial, but cy-
tokines of type 2 immunity strikingly predominate. The observed 
controversy could be attributed to the variations of underlying 
mechanisms of pathogenesis. In addition, multiple confound-
ing factors seem to interfere with cytokine expression, includ-
ing disease phase (acute vs. chronic), disease type (intrinsic vs. 
extrinsic), patient factors (epigenetics, polymorphisms, age, and 
race), and experimental models that might not exactly match AD 
in humans. Monoclonal antibodies and small molecules targeting 
cytokines and downstream signaling molecules are promising.

Table 1 |  The current status of cytokines and cytokine antagonists in atopic dermatitis.
Agent Structure and mechanism of action Current status National clinical trial
Antagonists of cytokines of type 2 immunity
Interleukin-4
Dupilumab Human IgG4 monoclonal antibody 

against IL4rα, a shared subunit 
with IL-13

FDA and EMA 2017, phase 4 NCT03667014
NCT03389893
NCT04447417
NCT03293030
NCT05042258
NCT04033367
NCT04520308
NCT04358224
NCT04823130
NCT04718870
NCT04895423

AK120 Monoclonal antibody against IL-4rα, 
a shared subunit with IL-13

Phase 2 NCT04256174

CBP-201 Monoclonal antibody against IL-4rα, 
a shared subunit with IL-13

Phase 2 NCT05017480
NCT04444752

Interleukin-5
Benralizumab Humanized recombinant IgG1κ 

monoclonal antibody against IL-5rα
Phase 2 NCT04605094

NCT03563066

Mepolizumab Humanized IgG1 monoclonal 
antibody against IL-5 Phase 2 NCT03055195

Interleukin-13
Tralokinumab Human IgG4 monoclonal antibody 

against IL-13
EMA 2021 Phase 3 NCT03587805

NCT03761537
NCT04587453
NCT03363854
NCT03160885
NCT03131648
NCT03526861
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Table 1 |  Continued.
Agent Structure and mechanism of action Current status National clinical trial
LY3650150 (lebrikizumab) Humanized IgG4 monoclonal 

antibody against IL-13rα1
Phase 3 NCT04626297

NCT04250350
NCT04392154
NCT04178967
NCT04146363
NCT04250337
NCT04760314

CC93538 (cendakimab) Humanized monoclonal antibody 
against IL-13

Phase 2 NCT04800315

ASLAN004 Human monoclonal antibody
against IL-13rα1

Phase 1 NCT04090229

Interleukin-31
CIM331 (nemolizumab) Humanized IgG2 monoclonal 

antibody against IL-31rα
Phase 3 NCT03985943

NCT03989349
NCT03989206
NCT05056779

BMS-981164 Monoclonal antibody against IL-31 Phase 1 NCT01614756
TSLP
MEDI9929 (AMG 157, tezepelumab) Human IgG2λ monoclonal 

antibody against TSLP
Phase 2 NCT02525094

NCT03809663
MK-8226 Recombinant human IgG1 monoclo-

nal antibody against TSLP receptor
Phase 1 NCT01732510

CCR-4
RPT193 Small molecule against CCR-4 Phase 1 NCT04271514
Cytokines of type 1 immunity
Interleukin-2
LY3471851 Recombinant IL-2 Phase 1 NCT04081350
Antagonists of cytokines of type 3 immunity
Interleukin-23 / interleukin-17 axis
MOR106 Human monoclonal antibody 

against IL-17C
Phase 2 NCT03864627

NCT03568071
Risankizumab Human monoclonal antibody 

against IL-23 
Phase 2 NCT03706040

Secukinumab Human IgG1κ monoclonal 
antibody against IL-7A

Phase 2 NCT02594098
NCT03568136

Ustekinumab Monoclonal antibody against p40, 
a shared subunit between IL-12r 

and IL-23r

Phase 2 NCT01806662
NCT01945086

Interleukin-22
ILV-094 (fezakinumab) IL-22 Phase 2 NCT01941537
LEO 138559 Human monoclonal antibody against 

IL-22r, a common receptor with IL-20
Phase 1 NCT04922021

NCT03514511
Antagonists of the interleukin-1 family
Interleukin-1
JNJ-77474462 (bermekimab) Human IgG1Κ monoclonal 

antibody against IL-1α
Phase 2 NCT04791319

NCT04990440
NCT04021862
NCT03496974

Anakinra Recombinant IL-1r antagonist Phase 1 NCT01122914
Interleukin-18
CMK389 IL-18 antagonist Phase 2 NCT04836858
Interleukin-33
ANB020 (etokimab) IgG1 monoclonal antibody 

against IL-33
Phase 2 NCT03533751

LY3375880 Monoclonal antibody against IL-33 Phase 2 NCT03831191
MEDI3506 Monoclonal antibody against IL-33 Phase 2 NCT04212169
MSTT1041A (astegolimab) Human IgG2monoclonal 

antibody against IL-33r
Phase 2 NCT03747575

REGN3500 Human monoclonal antibody 
against IL-33

Phase 2 NCT03738423
NCT03736967

CNTO 7160 IgG2σ monoclonal antibody 
against IL-33r

Phase 1 NCT02345928

PF-06817024 Monoclonal antibody against IL-33 Phase 1 NCT02743871
Interleukin-36
BI 655130 (spesolimab) Monoclonal antibody

against IL-36r
Phase 2 NCT03822832

NCT04086121
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Table 1 |  Continued.
Agent Structure and mechanism of action Current status National clinical trial
Miscellaneous (other cytokines and downstream signaling molecules)
Janus kinase antagonists
LY3009104 (baricitinib) JAK-1 and -2 antagonist EMA 2020, Phase 3 NCT03952559

NCT03559270
NCT03435081
NCT03334422
NCT03334396
NCT03428100
NCT03733301
NCT03334435

A 301 (ATI 502) Small molecule against JAK-1 and -2 Phase 3 NCT03002571
ABT-494 (upadacitinib) Small molecule against JAK-1 Phase 3 NCT03738397

NCT03661138
NCT04195698
NCT03607422
NCT04666675
NCT03569293
NCT03568318

INCB018424 (ruxolitinib) JAK-1 and -2 antagonist Phase 3
NCT03745651
NCT03745638
NCT04921969

LEO 124249 (delgocitinib) Small molecule; pan-JAK antagonist Phase 3 NCT04871711
NCT04872101
NCT04949841

PF04965842 (abrocitinib) Small molecule against JAK-1 Phase 3

NCT03796676
NCT03349060
NCT03575871
NCT03627767
NCT03720470
NCT03422822

SHR0302 Small molecule against JAK-1,
JAK-2, JAK-3, and TYK-2

Phase 3 NCT04875169

ARQ-252 Small molecule against JAK-1 Phase 2 NCT04378569
ASN002 Small molecule against spleen

tyrosine kinase and JAK
Phase 2 NCT03654755

NCT03531957
NCT03728504

ATI-1777 Small molecule against JAK-1 and -3 Phase 2 NCT04598269
Jaktinib Pan JAK antagonist Phase 2 NCT04539639
PF-06700841 JAK-1 and TYK-2 antagonist Phase 2 NCT03903822
Tofacitinib Small molecule against JAK-1 and -3 Phase 2 NCT02001181

NCT04246372
CEE321 Pan-JAK antagonist Phase 1 NCT04612062
Phosphodiesterase-4 antagonists
Crisaborole Small molecule, inhibitor of PDE-4 FDA 2016 EMA 2020 phase 4 NCT04214197

NCT03539601
NCT04023084
NCT03832010
NCT03868098

ARQ-151 (roflumilast) Small molecule, inhibitor of PDE-4 Phase 3 NCT04804605
NCT04773587
NCT04845620
NCT04773600

OPA-15406 (MM36) Small molecule, inhibitor of PDE-4 Phase 3
NCT03961529
NCT03911401
NCT03908970

Apremilast Small molecule, inhibitor of PDE-4 Phase 2 NCT02087943
NCT01393158
NCT04306965
NCT00931242
NCT03160248

DRM02 Small molecule, inhibitor of PDE-4 Phase 2 NCT01993420
E6005 (RVT-501) PDE-4 inhibitor Phase 2 NCT01461941

NCT03394677
NCT02950922

GW842470X PDE-4 inhibitor Phase 2 NCT00354510
Hemay808 Small molecule, inhibitor of PDE-4 Phase 2 NCT04352595
LEO 29102 PDE-4 inhibitor Phase 2 NCT01037881
PF-07038124 Small molecule, inhibitor of PDE-4 Phase 2 NCT04664153
LEO 39652 PDE-4 inhibitor Phase 1 NCT02219633

NCT01850849
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